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Immune-Motivated Optimization
E. Ahmed>®* and M. El-Alem*?
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An immune-motivated optimization method is proposed and applied to both spin glass
and graph coloring problems. Also animmune-motivated modification for the numerical
Euler method is proposed.
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1. METADYNAMICS OF THE IMMUNE SYSTEM

The immune system (IS) is an interesting dynamical system (Fagtrar,
1986). Every period, a certain fraction of its cells is eliminated and new cells are
recruited. Typically, every day approximately 5% of its cells are replaced by new
cells. This can be modeled by a dynamical process where the parameters change
on a slow scale while the states change on a faster one. Such systems are called
metadynamical systems (MDS).

Definition (Ahmed and Abdusalam, 1994). An MDS is defined by
Z1 = fi(z),

where { —1)N <k <iN,i =1, 2, 3,..., andN is a large positive number that
is chosen as follows: Fix > 0, then if the sequendey}, i —1)N <k <iN,is
in the basin of an attracta* of f;, then there existdl’ < iN, such thak > N’
implies that|z, — z'| < e.

Intuitively speaking, this means that for glthe transient system comes very
close to its asymptotic value. For the logistic miafzy) = A z«(1 — z), humerical
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simulations have shown that = 50 is an acceptable value. Motivated by the IS,
we are interested in the following updating of the parameters

Air1 = wAi + (1 — ) x md x Amax Q)

where both rndw € (0, 1), rnd is a uniformly distributed random number, and
Amax IS the maximum allowed value for the parametefThe typical values of
the IS correspond ta >~ 0.95, andAqnx = 4 for the logistic map. Starting by
Ai € (1, 3)and using the above values, one getsthat foralmastall, A; < (1, 3).
Thus for most of the time, the system oscillates between the attraetdr/1;.
This oscillatory behavior has been observed experimentally in the immune system
(Lundkvistet al., 1989). Moreover this dynamics is used to explain the long-term
immune memory even if the antigen (bacteria or virus) has been totally eradicated
(Ahmed and Abdusalam, 1994; Head, 2000).

In the following section, we see that this idea of MDS improves the conver-
gence properties of some numerical dynamical systems.

2. NEWTON’'S FORMULATION

Newton’s method for solving the nonlinear equat@{®) = 0 is given by the
iteration

Xern = % — 900)/G06), k=1,2,3,.. @

This method has a fast local g-quadratic rate of convergence under some reasonable
assumptions (Dennis and Schnabel, 1983). However, if the initial valigenot

close enough to the actual root, then the system (2) may not converge or even
worse, it may converge to a spurious solution.

The dynamical system (2) has been studieddior) polynomial in Hurley
and Martin (1984) where it has been shown thaf(¥) has three or more distinct
real roots then there are regions at which the system is chaotic. A similar study
has been done for complex polynomials (Saupe, 1988).

Thisweakness has been solved by, at least, two methods (Dennis and Schnabel,
1983). One of them is reviewed here. Its similarity with immune metadynamics is
interesting. The algorithm is to minimize the functid(r), wherer is a vector of
variables. This can be related to (2) by choosfng: %gz.

Algorithm 1. Fix a € (0, .5) (typicallya = 107%) andp € (0, 1)and chooser
arbitrary. Set k= 1.

1. Sethy = 1.
2. Compute g1 = rk — aH 'V T (ry), where H = [
wuk is chosen such that Hs safely positive definite

9 f (%)
axiaxj

]+ k!, and
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3. 0f f(ripn) — F(re) < —amV T (r)TH MV £(r) then set k= k + 1 and
go to step(1). Else setix = pix and go to stefg2).

Under the standard assumptions of Newton’s method, this algorithm is globally
convergent. The theorems proving the global convergence of this algorithm can be
found in Dennis and Schnabel (1983).

3. CHAOS CONTROL

Chaos systems exhibit extreme sensitivity to initial conditions (Holmgren,
1996). Hence, chaos control is an important subject. Several attempts have been
made (Ahmect al,, 1999; Ottet al,, 1990). Motivated by the above algorithm, the
following procedure for chaos control is proposed: Assumexhat = g(x, «)
is a chaotic dynamical system and that it is required to stabilize the system around
a given value, say,. This is equivalent to minimizing = %(g — X,)2. Using
Algorithm 1, the parameter should be perturbed according to the rule

2 2
Ayl = Ak — [kk(gk—xt)%]/[<%> +(gk—&)z—sg +Mk:|7 Q)

wheregk = g(Xk, @), anduy is chosen such that the denominator is safely positive.
Notice that\x can be replaced byix according to Step 3 in Algorithm 1. The ad-
vantage of this method is that the global convergence implies that one does not have
to wait till the system gets close xp, which was the case of OGY (Gital,, 1990).

The same procedure can be extended to find periodic orbits of pericl
minimizing f = %(g”(x, ) — X)?, using (4). The global convergence of (3) guar-
antees that it is more stable than the one used in Miller and Yorke (2000).

4. FORWARD RANDOM EULER’S METHOD

Relation (2) is used in forward Euler's method to solve the sysgémc
—xp, p(0) = 1 numerically. We call this modification forward random Euler’s
(FRE) method.

Itis known (Holmgren, 1996) that the standard forward Euler's method fails
for this problem. The reason is that Euler's method gives the discrete system
Pei1 = (1 — A%K)px. Thus for allx, there existdN such thak > N implies that
[(1 — A2%k)| > 1. When FRE method is applied, we obtain the correct asymptotic
solutionpx — 0 ask is increased.

5. IMMUNE MOTIVATED OPTIMIZATION

Nature has been created in a fascinating way. As we learn more, we found
that it is more efficient to imitate it. Recently, this approach has been applied
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to optimization (Boettcher and Percus, 2001). The authors proposed extremal
optimization (EO) where fitness are assigned to different configurations. Then
the one with the lowest fitness is removed and placed with another one randomly.
This idea is motivated by the work of Bak and Sneppen (1993). It has been applied
to the spin glass problem which consists od-alimensional hypercubic lattice

of lengthL where at each site there is a spijne {—1,1},i =1,2,..., L% The
Hamiltonian of the system is given by

1
H Z_EE(i,nBiniX]’, (4)

where the uniform distributed random variati®g < {—1, 1} and (i, j) means
thatj is the nearest neighbor (nn)itoThe objective is to choose the $&t} that
minimizes the energid. The approach of EQ is to assign fitnefg$o each site as
follows:

Xi

fi = Eﬁj(nnofi)Binj-

HereH = —X; f;. The EO algorithm is as follows:

Algorithm 2. Choose{x; } randomly to form an initial configuration S. Repeat
the following steps as desired.

1. Find f; for all x;.

2. Find the site j with lowest fitness and choose another configuration S
randomly such that;x is replaced by another state

3. IfH(S) < H(S) then Qest= S, else Fest= S.

The weakness of this approach is that focusing only on the worst fithess can

lead to a narrow deterministic process. To overcome this weakness, the authors
replaced Step 2 of the above algorithm by ranking the sites in an ascending order
according to their fithess. Then the replaced site is chosen randomly according to
the probability distribution.

Pk o< kK7F.
The first proposed immune motivated optimization IMOPL1 replaces Step 2 by

2. Replace randomly the sites with low&8t fitness (not just the one with lowest
fithess).

This gives a significantly higher fithess than the previous deterministic one (at the
same time) but it still has the previous drawback of falling into local minima.
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Table I. The Average Cost/Vertex for Different Valuesrofind p

np=36 np=4 np=45 np=5 np=55 np==6

n=32 0.313 0.313 0.313 0.469 0.531 0.750
n==64 0.313 0.422 0.516 0.609 0.906 0.906
n=96 0.5 0.442 0.516 0.609 0.906 0.1063

Another immune motivated optimization algorithm IMOP2 which preserves the
advantage of the above modification is to defindy

o = [%} (5)

whereA(1) is the minimum (maximum) possible fitness ang 0. Step 2 in the
above algorithm is now replaced by

2. If RND < ¢; then replace ¥

where RND is a uniformly distributed random number. This algorithm has the
following advantages: (1) It has a better chance of avoiding getting stuck in local
minima. (2) It does not require the ranking of all fithess at each time step as the
modification of Boettcher and Percus requires. This saves significant time specially
for large number of sites.

Comparing IMOP1 against IMOP2 for the three-dimensional spin glass prob-
lem with L = 10, we obtained energy/site—1.164 for IMOP1 and~—1.352 for
IMOP?2 after short time. After longer time, the value for IMOP2 has improved to
~—1.70 while that for IMOP1 did not improve. This was expected since IMOP1
is deterministic.

Now IMOP is applied to the problem of random graph coloring. It is stud-
ied for three colors but the generalization to any number of colors is direct. A
random graph is generated by connecting any pair ofi kertices by an edge
with probability p. Define the local cost at each vertexto be (1/2) (number
of its monochromatic nearest neighbors). Then if #nfc; /(np)]*, (- = .3 gave
the best results in our simulations) then the site’s color is changed randomly. The
total cost of the configuration is defined 8y= ), ¢;. If the total cost of the new
configuration is less than the old one then the new configuration is preserved and
the old one is discarded and vice versa. This process is continued for the time
allowed. Our results for the average cost/vertex for 5000 runs are shown in Table .
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