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E. Ahmed1,3,4 and M. El-Alem1,2

Received September 17, 2001

An immune-motivated optimization method is proposed and applied to both spin glass
and graph coloring problems. Also an immune-motivated modification for the numerical
Euler method is proposed.
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1. METADYNAMICS OF THE IMMUNE SYSTEM

The immune system (IS) is an interesting dynamical system (Farmeret al.,
1986). Every period, a certain fraction of its cells is eliminated and new cells are
recruited. Typically, every day approximately 5% of its cells are replaced by new
cells. This can be modeled by a dynamical process where the parameters change
on a slow scale while the states change on a faster one. Such systems are called
metadynamical systems (MDS).

Definition (Ahmed and Abdusalam, 1994). An MDS is defined by

zk+1 = fi (zk),

where (i − 1)N ≤ k ≤ i N , i = 1, 2, 3,. . . , andN is a large positive number that
is chosen as follows: Fixε > 0, then if the sequence{zk}, (i − 1)N ≤ k ≤ i N , is
in the basin of an attractorz?i of fi , then there existsN ′ < i N , such thatk > N ′

implies that|zk − z?i | < ε.

Intuitively speaking, this means that for alli , the transient system comes very
close to its asymptotic value. For the logistic mapfi (zk) = λi zk(1− zk), numerical
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simulations have shown thatN = 50 is an acceptable value. Motivated by the IS,
we are interested in the following updating of the parameters

λi+1 = ωλi + (1− ω)× rnd× λmax, (1)

where both rnd,ω ∈ (0, 1), rnd is a uniformly distributed random number, and
λmax is the maximum allowed value for the parameterλ. The typical values of
the IS correspond toω ' 0.95, andλmax= 4 for the logistic map. Starting by
λi ∈ (1, 3) and using the above values, one gets that for almost alli > 1,λi ∈ (1, 3).
Thus for most of the time, the system oscillates between the attractor 1− 1/λi .
This oscillatory behavior has been observed experimentally in the immune system
(Lundkvistet al., 1989). Moreover this dynamics is used to explain the long-term
immune memory even if the antigen (bacteria or virus) has been totally eradicated
(Ahmed and Abdusalam, 1994; Head, 2000).

In the following section, we see that this idea of MDS improves the conver-
gence properties of some numerical dynamical systems.

2. NEWTON’S FORMULATION

Newton’s method for solving the nonlinear equationg(x) = 0 is given by the
iteration

xk+1 = xk − g(xk)/g′(xk), k = 1, 2, 3,. . . (2)

This method has a fast local q-quadratic rate of convergence under some reasonable
assumptions (Dennis and Schnabel, 1983). However, if the initial valuex1 is not
close enough to the actual root, then the system (2) may not converge or even
worse, it may converge to a spurious solution.

The dynamical system (2) has been studied forg(x) polynomial in Hurley
and Martin (1984) where it has been shown that ifg(x) has three or more distinct
real roots then there are regions at which the system is chaotic. A similar study
has been done for complex polynomials (Saupe, 1988).

This weakness has been solved by, at least, two methods (Dennis and Schnabel,
1983). One of them is reviewed here. Its similarity with immune metadynamics is
interesting. The algorithm is to minimize the functionf (r), wherer is a vector of
variables. This can be related to (2) by choosingf = 1

2g2.

Algorithm 1. Fix a ∈ (0, .5) (typicallyα = 10−4) andρ ∈ (0, 1)and choose r1
arbitrary. Set k= 1.

1. Setλk = 1.
2. Compute rk+1 = rk − λk H−1

k ∇ f (rk), where Hk = [ ∂
2 f (xk)
∂xi ∂xj

] + µk I , and
µk is chosen such that Hk is safely positive definite.
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3. If f (rk+1)− f (rk) ≤ −αλk∇ f (rk)T H−1
k ∇ f (rk) then set k= k+ 1 and

go to step(1). Else setλk = ρλk and go to step(2).

Under the standard assumptions of Newton’s method, this algorithm is globally
convergent. The theorems proving the global convergence of this algorithm can be
found in Dennis and Schnabel (1983).

3. CHAOS CONTROL

Chaos systems exhibit extreme sensitivity to initial conditions (Holmgren,
1996). Hence, chaos control is an important subject. Several attempts have been
made (Ahmedet al., 1999; Ottet al., 1990). Motivated by the above algorithm, the
following procedure for chaos control is proposed: Assume thatxk+1 = g(xk, α)
is a chaotic dynamical system and that it is required to stabilize the system around
a given value, sayx?. This is equivalent to minimizingf = 1

2(g− x?)2. Using
Algorithm 1, the parameterα should be perturbed according to the rule

αk+1 = αk −
[
λk(gk − x?)

∂gk

∂ak

]/[(
∂gk

∂ak

)2

+ (gk − x?)
∂2gk

∂a2
k

+ µk

]
, (3)

wheregk = g(xk, αk), andµk is chosen such that the denominator is safely positive.
Notice thatλk can be replaced byρλk according to Step 3 in Algorithm 1. The ad-
vantage of this method is that the global convergence implies that one does not have
to wait till the system gets close tox?, which was the case of OGY (Ottet al., 1990).

The same procedure can be extended to find periodic orbits of periodn via
minimizing f = 1

2(gn(x, α)− x)2, using (4). The global convergence of (3) guar-
antees that it is more stable than the one used in Miller and Yorke (2000).

4. FORWARD RANDOM EULER’S METHOD

Relation (2) is used in forward Euler’s method to solve the systemdp
dx =−xp, p(0)= 1 numerically. We call this modification forward random Euler’s

(FRE) method.
It is known (Holmgren, 1996) that the standard forward Euler’s method fails

for this problem. The reason is that Euler’s method gives the discrete system
pk+1 = (1− λ2k)pk. Thus for allλ, there existsN such thatk > N implies that
|(1− λ2k)| > 1. When FRE method is applied, we obtain the correct asymptotic
solution pk → 0 ask is increased.

5. IMMUNE MOTIVATED OPTIMIZATION

Nature has been created in a fascinating way. As we learn more, we found
that it is more efficient to imitate it. Recently, this approach has been applied



P1: GXB

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372241 May 30, 2002 10:31 Style file version May 30th, 2002

988 Ahmed and El-Alem

to optimization (Boettcher and Percus, 2001). The authors proposed extremal
optimization (EO) where fitness are assigned to different configurations. Then
the one with the lowest fitness is removed and placed with another one randomly.
This idea is motivated by the work of Bak and Sneppen (1993). It has been applied
to the spin glass problem which consists of ad-dimensional hypercubic lattice
of lengthL where at each site there is a spinxi ∈ {−1, 1}, i = 1, 2,. . . , Ld. The
Hamiltonian of the system is given by

H = −1

2
6〈i , j 〉Bi j xi x j , (4)

where the uniform distributed random variableBi j ∈ {−1, 1} and 〈i , j 〉 means
that j is the nearest neighbor (nn) toi . The objective is to choose the set{xi } that
minimizes the energyH . The approach of EO is to assign fitnessfi to each site as
follows:

fi = xi

2
6 j (nn of i ) Bi j x j .

HereH = −6i fi . The EO algorithm is as follows:

Algorithm 2. Choose{xi } randomly to form an initial configuration S. Repeat
the following steps as desired.

1. Find fi for all xi .
2. Find the site i? with lowest fitness and choose another configuration S′

randomly such that xi ? is replaced by another state.
3. If H (S′) < H (S) then Sbest= S′, else Sbest= S.

The weakness of this approach is that focusing only on the worst fitness can
lead to a narrow deterministic process. To overcome this weakness, the authors
replaced Step 2 of the above algorithm by ranking the sites in an ascending order
according to their fitness. Then the replaced site is chosen randomly according to
the probability distribution.

pk ∝ k−τ .

The first proposed immune motivated optimization IMOP1 replaces Step 2 by

2. Replace randomly the sites with lowest5% fitness (not just the one with lowest
fitness).

This gives a significantly higher fitness than the previous deterministic one (at the
same time) but it still has the previous drawback of falling into local minima.
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Table I. The Average Cost/Vertex for Different Values ofn and p

np= 3.6 np= 4 np= 4.5 np= 5 np= 5.5 np= 6

n = 32 0.313 0.313 0.313 0.469 0.531 0.750
n = 64 0.313 0.422 0.516 0.609 0.906 0.906
n = 96 0.5 0.442 0.516 0.609 0.906 0.1063

Another immune motivated optimization algorithm IMOP2 which preserves the
advantage of the above modification is to defineαi by

αi =
[
λ̄− λi

λ̄− λ
]τ

, (5)

whereλ(λ̄) is the minimum (maximum) possible fitness andτ > 0. Step 2 in the
above algorithm is now replaced by

2. If RND < αi then replace xi ,

where RND is a uniformly distributed random number. This algorithm has the
following advantages: (1) It has a better chance of avoiding getting stuck in local
minima. (2) It does not require the ranking of all fitness at each time step as the
modification of Boettcher and Percus requires. This saves significant time specially
for large number of sites.

Comparing IMOP1 against IMOP2 for the three-dimensional spin glass prob-
lem with L = 10, we obtained energy/site'−1.164 for IMOP1 and'−1.352 for
IMOP2 after short time. After longer time, the value for IMOP2 has improved to
'−1.70 while that for IMOP1 did not improve. This was expected since IMOP1
is deterministic.

Now IMOP is applied to the problem of random graph coloring. It is stud-
ied for three colors but the generalization to any number of colors is direct. A
random graph is generated by connecting any pair of itsn vertices by an edge
with probability p. Define the local cost at each vertexci to be (1/2) (number
of its monochromatic nearest neighbors). Then if rnd< [ci /(np)]τ , (τ = .3 gave
the best results in our simulations) then the site’s color is changed randomly. The
total cost of the configuration is defined byC =∑i ci . If the total cost of the new
configuration is less than the old one then the new configuration is preserved and
the old one is discarded and vice versa. This process is continued for the time
allowed. Our results for the average cost/vertex for 5000 runs are shown in Table I.
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